
TrustMesh
A Blockchain-Enabled Trusted Distributed Computing Framework for Open

Heterogeneous IoT Environments

Murtaza Rangwala and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Lab
Department of Computing and Information Systems
The University of Melbourne

Cloud Layer

Big data processing
Data warehousing

Introduction

 Primitive View of an Edge Computing Network

Edge Layer

Local network
Data Processing & Reduction
Data Caching & Buffering
Control Response
Virtualization

Device Layer

Sensors & Controllers

Real-world multi-stakeholder environments are much more complex!

Introduction

Multi-Stakeholder Environments

Data Integrity

Lack of Centralized Trust

Stringent Audit Requirements

Device Heterogeneity

Challenges

Globally, IoT connections are growing at a CAGR of 16%
Revenue from these connections is growing at a CAGR of 14%

Existing distributed computing frameworks broadly fall under two distinct design philosophies

Central Coordinator Model Distributed Consensus Model

Existing Work

Existing distributed computing frameworks broadly fall under two distinct design philosophies

Central Coordinator Model Distributed Consensus Model

Existing Work

Allows the use of flexible, non-deterministic scheduling approaches
such as machine learning solutions and other meta-heuristics

Introduces single point(s) of failure making the network
susceptible to malicious attacks

In most cases, fault tolerant with minimal reliance on individual
entities

Less flexibility with selection of scheduling approach since
consensus requires a deterministic outcome.

TrustMesh: Bridging the Gap

Allows the use of flexible, non-deterministic scheduling approaches
such as machine learning solutions and other meta-heuristics

Byzantine fault tolerant with minimal reliance on individual entities

Three-Layer Architecture

Network Management Layer: Handles system setup and configuration

Computation Layer: Runs the blockchain network and processes data

Perception Layer: Interfaces with IoT devices

Key Innovations

Supports non-deterministic scheduling while maintaining Byzantine

fault tolerance using a novel multi-phase commit protocol

Maintains immutable audit trail and implements secure data

handling through blockchain and smart contracts

Capable of handling diverse IoT devices efficiently

Network Management Layer

Control Nodes

Serves as access point for administrators
Manages applications and workflows without
direct data processing
Not a critical point of failure for ongoing
operations

Application Deployment

Images pushed to registry, then smart contracts
invoked
Event-driven architecture ensures consistent
application deployment

Workflow Management

Defines complex processing pipelines as Directed
Acyclic Graphs (DAGs)
Relationships between applications are immutable
once stored

Computation Layer

Data Sub-Layer
Blockchain Ledger: Provides an immutable audit trail for all
operations
Distributed Database: Handles persistent storage with multi-
master architecture
Distributed Cache: Facilitates temporary storage and inter-
node communication

Consensus Sub-Layer
PBFT Consensus: Provides Byzantine fault tolerance for
standard operations
Multi-Phase Protocol: Enables non-deterministic scheduling
decisions

Service Sub-Layer
Task Executor: Orchestrates workflow execution according to
predefined specifications
Schedule Event Handler: Oversees schedule generation within
the computation layer
App Image Event Handler: Processes application management
events
Resource Registration: Monitors compute node resources at
configured intervals

IoT Node submits an intent to send
data for processing.

Multi-Phase Commit Protocol

All the compute nodes in the network use a
deterministic algorithm to assign the scheduling
responsibility to one of the blockchain nodes
using PBFT consensus.

Multi-Phase Commit Protocol

The newly designated scheduler uses the
available resource data and a flexible (and
pluggable) algorithm to decide on the data
processing schedule. All the computes nodes
achieve consensus on the generated schedule
using PBFT.

Multi-Phase Commit Protocol

We use a Least-Connected Dynamic Weighted Round
Robin (LCDWRR) approach for experimentation and

demonstration purposes

Once consensus is achieved, the schedule is
stored in the blockchain and the IoT node sends
the data to be processed to the assigned node.

Multi-Phase Commit Protocol

Perception Layer
Zero-Process Baseline Approach

Minimalist design optimized for resource-
constrained IoT devices
No running processes by default upon
deployment

Helper Components as Libraries

Transaction Initiator: Encapsulates raw data into
secure transaction batches
Response Manager: Implements Curve25519
cryptography for secure communication

Architectural Benefits

Lightweight footprint suitable for varied IoT
hardware
Clear separation of data collection and
processing concerns
Adaptable to diverse IoT application
requirements

Our Experiments were conducted with a total of 21 nodes acquired from the Melbourne
Research Cloud

Experimental Setup

And using a cold-chain monitoring workflow with 3 deployed applications

CPU Usage by Workflow Progression RAM Usage by Workflow Progression

Results

Staggered deployment peaks show two-phase application distribution mechanism
Minimal resource utilization in Perception Layer throughout operations
Stable RAM consumption in Computation Layer during operational phases
Sustained 45% CPU utilization during concurrent data processing
Resource patterns demonstrate effective workload distribution across heterogeneous nodes
Stable baseline consumption shows framework efficiency outside peak operations

Performance Comparison by Testbed Configuration

Framework overhead increases linearly from 3.25s to 4.19s
as nodes scale from 4 to 16

Only 8.3% increase in round-trip time despite quadrupling
nodes (4→16)

Linear overhead increase observed, though PBFT's O(n²)
complexity suggests this pattern may change with larger
node counts

Results

Average Round Trip Time: End-to-end processing duration from initial IoT request
to result delivery
Framework Overhead Time: Processing time added by TrustMesh, excluding
actual application execution

Metric Scenario 1 Scenario 2

Detection Latency (ms) 127 ± 15 142 ± 18

Recovery Time (s) 5.23 ± 0.12 5.31 ± 0.15

CPU Utilization (%) 45.5 47.8

Scenario 1: Non-designated nodes attempting to
propose schedules (safety property violation)

Scenario 2: Nodes designated to a new request
attempting to interfere with already scheduled requests
(agreement property violation)

Both experiments were conducted with 31.25% of the network configured to accept malicious scheduling attempts

Results

Q&A

Paper Preprint LinkedIn

Presentation Link

https://www.canva.com/design/DAGibWww0VQ/ZIqyXWs97pY_ro_eEJ4E5Q/view?utm_content=DAGibWww0VQ&utm_campaign=share_your_design&utm_medium=link2&utm_source=shareyourdesignpanel

