
SketchGuard: Scaling Byzantine-Robust Decentralized Federated
Learning via Sketch-Based Screening

Murtaza Rangwala

School of Computing and Information Systems

The University of Melbourne

Melbourne, Australia

rangwalam@unimelb.edu.au

Farag Azzedin

Department of Information and Computer Science

King Fahd University of Petroleum and Minerals

Dhahran, Saudi Arabia

fazzedin@kfupm.edu.sa

Richard O. Sinnott

School of Computing and Information Systems

The University of Melbourne

Melbourne, Australia

rsinnot@unimelb.edu.au

Rajkumar Buyya

School of Computing and Information Systems

The University of Melbourne

Melbourne, Australia

rbuyya@unimelb.edu.au

Abstract

Decentralized Federated Learning (DFL) enables privacy-preserving

collaborative training without centralized servers, but remains vul-

nerable to Byzantine attacks where malicious clients submit cor-

rupted model updates. Existing Byzantine-robust DFL defenses rely

on similarity-based neighbor screening that requires every client to

exchange and compare complete high-dimensional model vectors

with all neighbors in each training round, creating prohibitive com-

munication and computational costs that prevent deployment at

web scale. We propose SketchGuard, a general framework that de-

couples Byzantine filtering frommodel aggregation through sketch-

based neighbor screening. SketchGuard compresses 𝑑-dimensional

models to 𝑘-dimensional sketches (𝑘 ≪ 𝑑) using Count Sketch

for similarity comparisons, then selectively fetches full models

only from accepted neighbors, reducing per-round communication

complexity from 𝑂 (𝑑 |N𝑖 |) to 𝑂 (𝑘 |N𝑖 | + 𝑑 |S𝑖 |), where |N𝑖 | is the
neighbor count and |S𝑖 | ≤ |N𝑖 | is the accepted neighbor count. We

establish rigorous convergence guarantees in both strongly convex

and non-convex settings, proving that Count Sketch compression

preserves Byzantine resilience with controlled degradation bounds

where approximation errors introduce only a (1 + 𝑂 (𝜖)) factor
in the effective threshold parameter. Comprehensive experiments

across multiple datasets, network topologies, and attack scenarios

demonstrate that SketchGuard maintains identical robustness to

state-of-the-art methods, with mean test error rate deviation of

only up to 0.35 percentage points, while reducing computation time

by up to 82% and communication overhead by 50-70% depending on

filtering effectiveness, with benefits scaling multiplicatively with

model dimensionality and network connectivity. These results es-

tablish the viability of sketch-based compression as a fundamental

enabler of robust DFL at web scale.

CCS Concepts

• Security and privacy→ Systems security.

Keywords

Decentralized Learning, Byzantine Robustness, Dimensionality Re-

duction, Scalable Machine Learning

1 Introduction

Federated Learning (FL) enables collaborative training of AI models

over distributed data while preserving privacy by keeping raw data

local [23]. However, the canonical, server-assisted architecture of

FL centralizes aggregation of model parameters, creating a single

point of failure, a communication bottleneck, and trust issues [13].

These drawbacks have catalyzed Decentralized Federated Learning

(DFL), where clients exchange model updates in a peer-to-peer

manner over a dynamic communication graph, thereby improving

scalability and resilience [3].

A central challenge in DFL is byzantine robustness: the ability
to withstand malicious clients that submit arbitrary or carefully

crafted updates to poison training, induce consensus drift, or trig-

ger targeted failures [2, 5]. Unlike centralized FL where robust

rules such as Krum [5], coordinatewise Median [33], or Trimmed-

Mean [31] are applied once at a centralized server, DFL requires

every client to aggregate its neighbors’ updates under local, graph-

limited views, often with non-IID data and time-varying connec-

tivity. To address this added complexity, most DFL defenses adopt

local-consistency filters, where clients accept a neighbor’s update
only if it is sufficiently similar to their own state, and then aver-

age over the accepted subset [8, 11, 13, 17, 19]. These mechanisms

provide convergence and robustness guarantees in both strongly

convex and non-convex model training settings, yet suffer from a

fundamental scalability bottleneck: clients must exchange and com-

pare complete, high-dimensional model vectors with all neighbors

in every round. For emerging web-scale applications like decentral-

ized training of frontier models with billions of parameters across

thousands of distributed participants [7, 22], this creates prohibi-

tive communication and computation costs that prevent practical

implementation of these systems at scale.

Sketch-based compression offers tools for communication effi-

cient learning. Count Sketch, for instance, compresses a vector of 𝑑

dimensions into a summary of 𝑘 dimensions using simple hash and

sign functions, where 𝑘 ≪ 𝑑 . Sketches are linear and allow approxi-

mate preservation of coordinates, thereby supporting fast similarity

estimation with formal guarantees [10, 16, 26]. While sketching

has proven effective for bandwidth reduction in FL, extending it

ar
X

iv
:s

ub
m

it/
68

71
41

0
 [

cs
.L

G
]

 9
 O

ct
 2

02
5

https://orcid.org/0009-0003-4578-8671
https://orcid.org/0000-0001-9712-439X
https://orcid.org/0000-0001-5998-222X
https://orcid.org/0000-0001-9754-6496

to Byzantine-robust, fully decentralized aggregation, where com-

pressed representations must support secure neighbor screening,

remains underexplored.

In this paper, we propose SketchGuard, a general framework

for Byzantine-robust DFL that decouples filtering from aggregation

through sketch-based neighbor screening. Our key insight is that

similarity-based Byzantine filtering can operate on compressed

representations, while the final aggregation requires full precision

models only for accepted neighbors. SketchGuard is applicable

to any similarity-based Byzantine defense that relies on Euclidean

distance measures (e.g., [13, 19, 25, 30]), but for our theoretical anal-

ysis and empirical evaluation, we instantiate it with state-of-the-art

BALANCE aggregation [13], which provides the strongest theoreti-

cal guarantees among existing methods. Our main contributions

can be summarized as follows:

• We provide rigorous analysis showing that Count Sketch com-

pression maintains Byzantine resilience with controlled degra-

dation bounds.

• Weestablish convergence rates for SketchGuard in both strongly

convex and non-convex settings.

• Through comprehensive experiments across multiple datasets,

network topologies, and attack scenarios, we demonstrate that

our approach achieves identical robustness to state-of-the-art

methods while reducing communication overhead by 50-70%

and computation time by up to 82%.

2 Preliminaries and Related Work

This section provides technical background onDFL protocols, Byzan-

tine attack models, and compression techniques, and discusses re-

lated work in each area.

2.1 DFL Problem Formulation and Protocol

Consider 𝑛 clients connected by an undirected graph 𝐺 = (𝑉 , 𝐸),
where each client 𝑖 ∈ 𝑉 possesses a private dataset D𝑖 and main-

tains a local model w𝑖 ∈ R𝑑
. The collective objective is to minimize

the average empirical loss:

min

w∈R𝑑
𝐹 (w) = 1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖 (w), (1)

where 𝑓𝑖 (w) = E(x,𝑦)∼D𝑖
[ℓ (w; x, 𝑦)] is the expected loss over client

𝑖’s data distribution.

The DFL protocol alternates between two phases. First, clients

perform local updates:

w𝑡+1/2
𝑖

= w𝑡
𝑖 − 𝜂∇𝑓𝑖 (w𝑡

𝑖). (2)

Then, each client aggregates neighbor models according to:

w𝑡+1
𝑖 = 𝛼w𝑡+1/2

𝑖
+ (1 − 𝛼) · AGG𝑖

(
{w𝑡+1/2

𝑗
: 𝑗 ∈ N𝑖 }

)
, (3)

where N𝑖 denotes client 𝑖’s neighbors and AGG𝑖 is a local aggrega-

tion function.

2.2 Byzantine Attack Models

We consider 𝑓 -Byzantine adversaries that control up to 𝑓 clients

per neighborhood. Byzantine clients can deviate arbitrarily from

the protocol, presenting a spectrum of threats ranging from simple

disruption to sophisticated coordinated manipulation. These adver-

saries may employ model poisoning by sending crafted parameters

ŵ𝑗 designed to maximize deviation from honest updates while

evading detection by robust aggregation rules. Representative at-

tacks include random noise injection [5], data label flipping [2], and

gradient-based perturbation optimization [24]. More sophisticated

adversaries operate adaptively, observing honest client behavior

and adjusting their strategy accordingly. Such attacks [14, 28] solve

optimization problems to craft maximally harmful updates that re-

main within detection thresholds of similarity-based defenses. The

most challenging scenarios involve collusive attacks where multi-

ple Byzantine clients coordinate their malicious behavior [24, 32],

potentially overwhelming local robust aggregation mechanisms

that assume independent adversarial actions. These coordinated

strategies can amplify individual malicious impact through strate-

gic cooperation, creating correlated deviations that may appear

legitimate to individual clients with limited neighborhood views.

The fundamental challenge for DFL robustness lies in defending

against these varied attack strategies under graph-limited visibility,

where each client must make aggregation decisions based solely on

local neighborhood information rather than global network state.

This constraint makes similarity-based filtering particularly attrac-

tive, as it provides a principled approach to neighbor screening

that remains effective across different attack types while being

computationally tractable for individual clients.

2.3 Byzantine-Robust DFL Defenses

As explained in the previous section, existing DFL defenses have

converged on similarity-based neighbor filtering as the dominant

paradigm, with methods differing primarily in their filtering criteria

and aggregation mechanisms.

UBAR [17] utilizes two-stage neighbor selection based on distance

and loss filtering, followed by averaging.

LEARN [11] employs multiple rounds of model exchanges per iter-

ation with trimmed-mean aggregation. The multi-round communi-

cation exacerbates the pre-existing scalability issues with similarity-

based filtering mechanisms.

SCCLIP [19] applies self-centered clipping to each received neigh-

bor model, mitigating large-magnitude deviations. It provides con-

vergence guarantees in non-convex settings but also requires full

model comparisons.

BALANCE [13] introduces adaptive similarity thresholds for neigh-

bor screening with strong theoretical convergence guarantees in

both strongly convex and non-convex settings. It achieves state-of-

the-art robustness but at a high computational cost.

WFAgg [8] proposes multi-filter approaches for dynamic topolo-

gies, combining several screening mechanisms while maintaining

the same computational complexity limitations.

However, all these methods require computation of similarities

between complete 𝑑-dimensional model vectors with all neighbors,

creating bottlenecks that prevent practical web-scale deployments.

Table 1 compares SketchGuard with these existing DFL defense

approaches.

2

Table 1: Comparison of Byzantine-robust decentralized ag-

gregation algorithms. “Convex”/“Non-convex” indicate con-

vergence guarantees; “No 𝑐𝑖” means no need to know compro-

mised node ratio; “No Complete” means no complete-graph

assumption.

Algorithm Convex Non-convex No 𝑐𝑖 No Complete Scalable

UBAR [17] – – – – Med.

LEARN [11] – ✓ – – Low

SCCLIP [19] – ✓ ✓ ✓ Med.

BALANCE [13] ✓ ✓ ✓ ✓ Med.

WFAgg [8] – – ✓ ✓ Med.

SketchGuard ✓ ✓ ✓ ✓ High

2.4 Compression Techniques in FL

Communication and computational efficiency remain fundamental

challenges in FL, motivating extensive research in model compres-

sion. Quantization techniques reduce parameter precision [1, 4],

sparsification methods transmit only significant updates [27, 29],

and low-rank approaches exploit model structure [18, 20]. However,

most compression techniques target benign settings and often com-

promise robustness when Byzantine participants are present. Tra-

ditional quantization can amplify malicious update impact, while

sparsification enables attackers to concentrate influence in trans-

mitted coordinates. More broadly, existing compression methods

are incompatible with Byzantine-robust aggregation algorithms,

preventing scalable deployment of robust FL.

2.5 Count Sketch

Count Sketch [10] provides randomized linear projection with prop-

erties that make it particularly suitable for Byzantine-robust neigh-

bor screening in DFL. Given w ∈ R𝑑
, a Count Sketch of size 𝑘 ≪ 𝑑

is constructed using hash function ℎ : [𝑑] → [𝑘] and sign function

𝑠 : [𝑑] → {−1,+1}:
CS(w) [𝑏] =

∑︁
𝑖 :ℎ (𝑖)=𝑏

𝑠 (𝑖)𝑤𝑖 , 𝑏 = 1, . . . , 𝑘 . (4)

Count Sketch possesses three critical properties for robust DFL

screening. First, linearity ensures consistent compression across

clients, as CS(𝛼u + 𝛽v) = 𝛼CS(u) + 𝛽CS(v). Second, unbiased
coordinate estimation provides formal recovery guarantees [10, 26].

Third, and most crucial for similarity-based Byzantine filtering,

Count Sketch preserves approximate Euclidean distances:

Lemma 1 (Distance Preservation [10]). For any vectors u, v ∈
R𝑑 and sketch size 𝑘 = 𝑂 (𝜖−2 log(1/𝛿)), with probability at least
1 − 𝛿 :

(1 − 𝜖)∥u − v∥2 ≤ ∥CS(u) − CS(v)∥2 ≤ (1 + 𝜖)∥u − v∥2 (5)

3 SketchGuard: Scalable Robust Aggregation

We now present SketchGuard, which leverages Lemma 1 to per-

form neighbor screening in the sketch domain. The key design

rationale is that if Count Sketch approximately preserves distances,

then similarity-based filtering decisions made using sketches will

closely match those made using full-precision models, allowing us

to defer expensive full-model exchanges until after filtering.

3.1 Protocol Description

At each DFL training round 𝑡 , client 𝑖 executes the four-phase

SketchGuard protocol detailed in Algorithm 1 and illustrated in

Figure 1 as follows:

Phase 1: Local Training. Client 𝑖 performs local stochastic gradi-

ent descent as shown in Equation 2.

Phase 2: Sketch Exchange. The updated model is compressed

using CS: s𝑡+1/2
𝑖

= CS(w𝑡+1/2
𝑖
), and these 𝑘-dimensional sketches

are exchanged with the immediate neighbors N𝑖 .

Phase 3: Adaptive Filtering.Neighbor 𝑗 is accepted if their sketch

distance satisfies:

∥s𝑡+1/2
𝑖

− s𝑡+1/2
𝑗
∥ ≤ 𝛾 exp(−𝜅𝑡/𝑇)∥s𝑡+1/2

𝑖
∥ (6)

where 𝛾 controls the base threshold, 𝜅 the decay rate, and 𝑇 the

total rounds. This adaptive threshold mechanism is adopted from

BALANCE [13], where the exponential decay reflects convergence

of honest clients over time.

Remark 1. When using Count Sketch compression with approxi-
mation parameter 𝜖 , the effective threshold parameter becomes 𝛾eff =

𝛾
√︁
(1 + 𝜖)/(1 − 𝜖) to account for distance preservation errors in the

sketch domain, as established by the analysis in Lemma 1. This ensures
that our theoretical convergence guarantees in Section 4 accurately
reflect the impact of compression on filtering decisions.

Phase 4: Model Aggregation. Full models are fetched from ac-

cepted neighbors S𝑡𝑖 . Before aggregation, each received model

w𝑡+1/2
𝑗

is verified by recomputing its sketch and comparing with the

originally received s𝑡+1/2
𝑗

. Any neighbor whose model fails verifica-

tion is removed from S𝑡𝑖 . The verified models are then aggregated:

w𝑡+1
𝑖 = 𝛼w𝑡+1/2

𝑖
+ (1 − 𝛼)|S𝑡

𝑖
|

∑︁
𝑗∈S𝑡

𝑖

w𝑡+1/2
𝑗

(7)

where 𝛼 ∈ [0, 1] balances self-reliance and collaboration.

Algorithm 1 SketchGuard: Robust Aggregation via Adaptive

Sketch-Based Filtering

Require: Local data D𝑖 , neighbors N𝑖 , parameters 𝛾,𝜅, 𝛼 , sketch size 𝑘

Ensure: Updated model w𝑡+1
𝑖

1: w𝑡+1/2
𝑖

← w𝑡
𝑖
− 𝜂g(w𝑡

𝑖
)

2: s𝑡+1/2
𝑖

← CS(w𝑡+1/2
𝑖
)

3: Exchange sketches s𝑡+1/2
𝑖

with neighbors N𝑖

4: 𝜏 ← 𝛾 exp(−𝜅𝑡/𝑇) ∥s𝑡+1/2
𝑖

∥
5: S𝑡

𝑖
← { 𝑗 ∈ N𝑖 : ∥s𝑡+1/2𝑖

− s𝑡+1/2
𝑗
∥ ≤ 𝜏 }

6: if |S𝑡
𝑖
| = 0 and |N𝑖 | > 0 then

7: S𝑡
𝑖
← {argmin𝑗 ∈N𝑖 ∥s

𝑡+1/2
𝑖

− s𝑡+1/2
𝑗
∥ }

8: end if

9: Fetch models {w𝑡+1/2
𝑗
} 𝑗 ∈S𝑡

𝑖
from accepted neighbors

10: Verify CS(w𝑡+1/2
𝑗
) = s𝑡+1/2

𝑗
for each 𝑗 ∈ S𝑡

𝑖
; remove if mismatch

11: w𝑡+1
𝑖
← 𝛼w𝑡+1/2

𝑖
+ 1−𝛼
|S𝑡
𝑖
|
∑

𝑗 ∈S𝑡
𝑖
w𝑡+1/2

𝑗

12: return w𝑡+1
𝑖

3

Figure 1: The SketchGuard Protocol

3.2 Complexity Analysis and Performance

Trade-offs

We analyze the per-node-per-round complexity of SketchGuard

compared to the best-case computation and communication com-

plexity of existing Byzantine-robust methods. Let 𝑑 denote the

model dimension, |N𝑖 | the number of neighbors, 𝑘 the sketch size,

and |S𝑡𝑖 | the number of accepted neighbors. For computational

complexity, SketchGuard executes four phases per round:

• Sketch generation: 𝑂 (𝑑)
• Neighbor screening (compressed domain): 𝑂 (𝑘 · |N𝑖 |)
• Model verification & aggregation (accepted neighbors):𝑂 (𝑑 · |S𝑡𝑖 |)
This yields total complexity 𝑂 (𝑑 + 𝑘 · |N𝑖 | + 𝑑 · |S𝑡𝑖 |), compared

to 𝑂 (𝑑 · |N𝑖 |) for traditional methods that perform full-precision

screening of all neighbors.

Table 2: Computational complexity comparison with state-

of-the-art (SOTA) across training phases.

Training Phase SOTA SketchGuard

Local Training 𝑂 (𝑑) 𝑂 (𝑑)
Sketch Generation – 𝑂 (𝑑)
Neighbor Screening 𝑂 (𝑑 · |N𝑖 |) 𝑂 (𝑘 · |N𝑖 |)
Model Verification &

Aggregation

𝑂 (𝑑 · |N𝑖 |) 𝑂 (𝑑 · |S𝑡𝑖 |)

Total Per Round 𝑂 (𝑑 · |N𝑖 |) 𝑂 (𝑑+𝑘 · |N𝑖 |+𝑑 · |S𝑡𝑖 |)

For communication complexity, SketchGuard transmits two

types of messages: sketches to all neighbors and full models to

accepted neighbors. This results in𝑂 (𝑘 · |N𝑖 | +𝑑 · |S𝑡𝑖 |) parameters

per round, compared to 𝑂 (𝑑 · |N𝑖 |) for existing approaches.
The theoretical requirement 𝑘 = 𝑂 (𝜖−2 log(1/𝛿)) translates to

practical sketch sizes that remain much smaller than model dimen-

sions while providing strong approximation guarantees. Sketch-

Guard’s performance benefits scale with three factors: (1) the com-

pression ratio𝑑/𝑘 , where larger models yield greater savings, (2) the

filtering effectiveness ratio |S𝑡𝑖 |/|N𝑖 |, where successful Byzantine
rejection reduces the number of full models fetched, and (3) net-

work degree |N𝑖 |, where denser connectivity amplifies the screen-

ing overhead reduced by compression. While sketch generation

and exchange introduce 𝑂 (𝑑 + 𝑘 · |N𝑖 |) overhead even in benign

settings, this cost becomes negligible as model dimensionality and

network scale increase, which characterizes the web-scale deploy-

ments where Byzantine robustness is necessary.

4 Convergence Analysis

In this section, we establish that SketchGuard maintains con-

vergence guarantees despite compressed filtering by proving that

sketch-based screening preserves the robustness properties of full-

precision similarity-based defenses with controlled degradation

bounds.

4.1 Technical Assumptions

We state the standard assumptions that impact on convergence

analysis.

Assumption 1 (Strong Convexity). The population risk 𝐹 (w)
is 𝜇-strongly convex, i.e., for all w1,w2 ∈ Θ, one has that:

𝐹 (w1) + ⟨∇𝐹 (w1),w2 −w1⟩ +
𝜇

2

∥w2 −w1∥2 ≤ 𝐹 (w2).

Assumption 2 (Smoothness). The population risk 𝐹 (w) is 𝐿-
smooth, i.e., for all w1,w2 ∈ Θ, we have that:

∥∇𝐹 (w1) − ∇𝐹 (w2)∥ ≤ 𝐿∥w1 −w2∥ .

Assumption 3 (Bounded Variance). The stochastic gradient
g(w𝑖) computed by an honest client 𝑖 ∈ H is an unbiased estimator
of the true gradient, and g(w𝑖) has bounded variance, whereH is the
set of honest clients. That is, ∀𝑖 ∈ H , one has that:

E[g(w𝑖)] = ∇𝐹 (w𝑖), E[∥g(w𝑖) − ∇𝐹 (w𝑖)∥2] ≤ 𝛿2 .

Assumption 4 (Bounded Parameters). For any honest client
𝑖 ∈ H , the model w𝑖 and ∥∇𝐹 (w𝑖)∥ are bounded. That is, ∀𝑖 ∈ H ,
we have ∥w𝑖 ∥ ≤ 𝜓 , and ∥∇𝐹 (w𝑖)∥ ≤ 𝜌 .

4

Assumption 5 (Graph Connectivity). The subgraph induced
by honest clients 𝐺H remains connected throughout training.

Assumption 6 (Hash Function Synchronization). All clients
use identical hash and sign functions for consistent sketching across
the network.

4.2 Main Convergence Results

Leveraging Lemma 1, we establish convergence guarantees for

SketchGuard that achieve similar results to those based on full-

precision methods.

Theorem 1 (Strongly Convex Convergence with Compres-

sion). For 𝜇-strongly convex and 𝐿-smooth objectives, with learn-
ing rate 𝜂 ≤ min{1/(4𝐿), 1/𝜇} and effective threshold parameter
𝛾eff = 𝛾

√︁
(1 + 𝜖)/(1 − 𝜖), after 𝑇 rounds:

E[𝐹 (w𝑇
𝑖) − 𝐹 (w∗)] ≤ (1 − 𝜇𝜂)𝑇 [𝐹 (w0

𝑖) − 𝐹 (w∗)]

+ 2𝐿𝜂𝛿2

𝜇
+
2𝛾eff𝜌𝜓 (1 − 𝛼)

𝜇𝜂
(8)

where the compression error manifests only through the (1+𝜖)/(1−𝜖)
factor in 𝛾eff.

Proof. See Appendix A. □

Theorem 2 (Non-Convex Convergence with Compression).

For non-convex 𝐿-smooth objectives, with the same parameter choices:

1

𝑇

𝑇−1∑︁
𝑡=0

E[∥∇𝐹 (w𝑡
𝑖)∥2] ≤

2[𝐹 (w0

𝑖) − 𝐹 ∗]
𝜂𝑇

+ 4𝐿𝜂𝛿2 +
4𝛾eff𝜌𝜓 (1 − 𝛼)

𝜂
(9)

Proof. See Appendix B. □

Both theorems demonstrate that SketchGuard achieves optimal

convergence rates for their respective settings [15], with sketch

approximation introducing only a (1 +𝑂 (𝜖)) multiplicative factor

on the threshold-dependent terms in the convergence bounds. For

practical values of 𝜖 (e.g., 𝜖 = 0.1 yields𝛾eff ≈ 1.1𝛾), this degradation

is minimal while enabling substantial compression.

4.3 Robustness Preservation Under

Compression

Our final theoretical result establishes that sketch compression

preserves Byzantine robustness guarantees with controlled degra-

dation.

Lemma 2 (SketchCompression Preserves Byzantine Resilience).

Under the conditions of Theorems 1 and 2, sketch-based filtering
with effective threshold 𝛾eff = 𝛾

√︁
(1 + 𝜖)/(1 − 𝜖) provides equiva-

lent Byzantine resilience to full-precision filtering with threshold 𝛾eff.
Specifically, compression does not create new attack vectors beyond
the controlled threshold degradation.

Proof. This follows directly from the convergence analysis in

Theorems 1 and 2. Both proofs bound the neighbor difference terms

under sketch-based filtering (Appendix A.5):

 1

|S𝑖 |
∑︁
𝑗∈S𝑖

(w𝑡+1/2
𝑗
−w𝑡+1/2

𝑖
)

 ≤ 𝛾eff𝜓
This bound is identical in form to the full-precision case, differing

only in the threshold parameter 𝛾 → 𝛾eff. Since the convergence

proofs do not require any additional structural assumptions about

the filtering mechanism beyond this bound, any Byzantine strategy

must satisfy the same constraints as in the full-precision case, but

with the relaxed threshold 𝛾eff. Therefore, compression preserves

the Byzantine resilience properties established by [13], with degra-

dation bounded by the factor

√︁
(1 + 𝜖)/(1 − 𝜖) = 1 +𝑂 (𝜖). □

5 Performance Evaluation

We evaluate SketchGuard
1
through comprehensive experiments

demonstrating that sketch-based compression maintains identi-

cal Byzantine robustness to state-of-the-art full-precision defenses

while substantially reducing computational and communication

overhead.

5.1 Experimental Setup

5.1.1 Datasets and Models. We conduct experiments on two stan-

dard federated learning benchmarks from the LEAF suite [9], chosen

for their naturally non-IID data distributions that closely reflect

real-world heterogeneity in federated environments. We evaluate

both robustness and scalability across diverse model sizes.

FEMNIST (Federated Extended MNIST) is a character recognition

dataset with 62 classes distributed across 3,550 users, where each

user represents a different writer’s handwriting samples. We em-

ploy a convolutional neural network comprising two convolutional

layers followed by two fully connected layers. Our baseline con-

figuration uses 6.6M parameters, which we systematically scale

from 220K to over 60M parameters in our dimensionality scaling

experiments (Section 5.3) to evaluate SketchGuard under varying

model complexities representative of modern federated learning

deployments.

CelebA is a celebrity face attributes dataset distributed across 9,343

users. We use it for binary smile classification (smiling or not smil-

ing), with a CNN architecture adapted for RGB inputs (84×84 pixels)
containing 2.2M parameters. The network consists of two convolu-

tional layers and two fully connected layers. Complete architectural

specifications for both models are provided in Appendix C.1.

5.1.2 Network Topologies. We evaluate defense mechanisms across

carefully selected network topologies that capture the spectrum

of connectivity patterns in real-world decentralized systems, from

resource-constrained sparse networks to well-connected infras-

tructures. For robustness evaluation experiments in Section 5.2,

we employ Erdős-Rényi (ER) random graphs [12], which naturally

model peer-to-peer networks where connections form probabilisti-

cally. ER graphs are generated by independently connecting each

pair of nodes with probability 𝑝 , producing networks with variable

local connectivity that reflect real-world decentralized learning

1
Code and experiment artifacts available at doi.org/10.5281/zenodo.17223405.

5

https://doi.org/10.5281/zenodo.17223405

(a) Ring (b) ER Sparse

𝑝 = 0.2

(c) ER Medium

𝑝 = 0.45

(d) ER Dense

𝑝 = 0.6

(e) Fully Connected

Figure 2: Network topologies used in the robustness evaluation experiments.

scenarios where participants discover neighbors organically rather

than through engineered topologies. We evaluate five topologies

spanning from minimal connectivity (Ring) to maximum connec-

tivity (Fully Connected), with three intermediate ER graph densi-

ties as shown in Figure 2; complete specifications are provided in

Appendix C.2.1. These experiments use 20 nodes to enable compre-

hensive evaluation across varying malicious client fractions and

defense mechanisms while maintaining computational tractabil-

ity. For network scaling experiments in Section 5.3, we employ

k-regular graphs [6] where each node has exactly 𝑘 neighbors.

This design choice ensures consistent per-node computational load

across all defense mechanisms, enabling fair comparison of algo-

rithmic efficiency independent of topology-induced variance. We

evaluate networks scaling from 20 to 300 nodes, demonstrating

SketchGuard’s scalability to large-scale deployments with hun-

dreds of participants.

5.1.3 Attack Models. We evaluate Byzantine robustness using two

representative attack strategies that represent different threat mod-

els and attack sophistication levels.

Directed Deviation attacks employ an optimization-based ap-

proach that crafts malicious updates by solving for parameters

that maximize deviation in the direction opposite to honest gra-

dient descent. This adaptive attack strategy represents a strong

adversary that actively attempts to subvert Byzantine-robust ag-

gregation mechanisms by carefully positioning malicious updates

to evade detection while maximizing impact. We implement the

directed deviation attack following the formulation in [14], which

has demonstrated effectiveness against common Byzantine-robust

aggregation rules including Krum and trimmed mean.

Gaussian attacks [5] inject random noise ŵ𝑗 = w𝑗 + N(0, 𝜎2I)
with 𝜎 = 1, representing less sophisticated but realistic adversaries

that disrupt convergence through stochastic perturbations. While

simpler than directed deviation, these attacks model practical sce-

narios where attackers lack complete knowledge of the aggregation

mechanism or resources for optimization-based attacks.

We vary the fraction of Byzantine clients from 0% to 80% in 10%

increments to evaluate robustness across different attack intensities.

These attack strategies provide complementary evaluation: directed

deviation establishes defense performance against sophisticated

adaptive adversaries, while Gaussian attacks validate robustness

against simpler but more common threat models.

5.1.4 Baselines and Configuration. We compare SketchGuard

against four baselinemethods: D-FedAvg [21], KRUM [5], UBAR [17],

and BALANCE [13], representing the spectrum from non-robust to

state-of-the-art Byzantine-robust aggregation. For all experiments,

except the 𝑘-ablation study, we employ sketch sizes 𝑘 = 1000 for

FEMNIST and 𝑘 = 350 for CelebA. For the baseline model con-

figurations, this achieves compression ratios of 6603:1 and 6342:1

respectively, with approximation error 𝜖 ≲ 0.2 and probability

1−𝛿 > 0.99. All experiments use standard DFL configurations with

10 global rounds and 3 local epochs per round. We repeat each ex-

periment across 3 random seeds and report mean results; observed

variances are minimal across all metrics. Complete hyperparameter

specifications are provided in Appendix C.2.2.

5.1.5 Evaluation Metrics. We evaluate defense mechanisms using

three complementary metrics that capture robustness, computa-

tional efficiency, and communication overhead.

Test Error Rate (TER).Defined as 1−test accuracy, TERmeasures

performance degradation averaged across honest clients. Lower

values indicate better Byzantine resilience.

Per-Round Computation Time. Wall-clock time for neighbor

screening and aggregation phases per client per round, excluding

local training which remains constant across methods. All measure-

ments are recorded on identical hardware.

Communication Overhead. Total parameters transmitted per

client per round, including sketches and full model exchanges. We

report both absolute counts and reduction percentages relative to

full-precision baselines.

5.2 Byzantine Robustness Evaluation

5.2.1 Attack Strategy Resilience. Figure 3 evaluates SketchGuard’s
robustness against both directed deviation and Gaussian attacks

on FEMNIST and CelebA datasets, averaged across all network

topologies. SketchGuard achieves robustness equivalent to state-

of-the-art methods BALANCE and UBAR across both attack strate-

gies. Compared to BALANCE, SketchGuard exhibits statistically

identical performance withmean absolute TER deviation of 0.02 per-

centage points and maximum deviation of 0.49 percentage points.

Compared to UBAR, SketchGuard shows mean absolute TER devi-

ation of 0.35 percentage points and maximum deviation of 1.51 per-

centage points, with SketchGuard having marginally higher TER

on average by 0.20 percentage points; however, UBAR’s loss-based

6

0 10 20 30 40 50 60 70 80
Frac. of malicious clients (%)

0.0

0.2

0.4

0.6

0.8

1.0

TE
R

(a) FEMNIST - Directed Deviation

0 10 20 30 40 50 60 70 80
Frac. of malicious clients (%)

0.0

0.2

0.4

0.6

0.8

1.0

TE
R

(b) FEMNIST - Gaussian

0 10 20 30 40 50 60 70 80
Frac. of malicious clients (%)

0.0

0.2

0.4

0.6

0.8

1.0

TE
R

(c) CelebA - Directed Deviation

0 10 20 30 40 50 60 70 80
Frac. of malicious clients (%)

0.0

0.2

0.4

0.6

0.8

1.0

TE
R

(d) CelebA - Gaussian

10 30 50 70
0.152

0.236

0.319
Zoom

10 30 50 70
0.147

0.160

0.174
Zoom

10 30 50 70
0.097

0.163

0.230
Zoom

10 30 50 70
0.086

0.108

0.130
Zoom

FEDAVG KRUM BALANCE UBAR SKETCHGUARD

Figure 3: Impact of fraction of malicious clients on TER across different datasets and attack types.

screening mechanism requires significantly higher computational

overhead than both BALANCE and SketchGuard, as demonstrated

in Section 5.3. Against both directed deviation (Figures 3a, 3c) and

Gaussian attacks (Figures 3b, 3d), SketchGuard maintains consis-

tently low error rates across all Byzantine client fractions, demon-

strating that sketch-based compression preserves the robustness

properties of full-precision similarity-based defenses while enabling

substantial efficiency gains.

5.2.2 Sketch Size Robustness. SketchGuard demonstrates remark-

able robustness to sketch size selection. Across 𝑘 values ranging

from 500 to 100,000 on both FEMNIST and CelebA datasets under

50% Byzantine clients with directed deviation attacks, performance

remains completely stable (TER = 15.59% for FEMNIST, 10.35% for

CelebA across all 𝑘 values). Even with compression ratios exceed-

ing 13,000:1 (𝑘 = 500 for FEMNIST’s 6.6M parameters), Sketch-

Guard preserves full Byzantine resilience. This insensitivity to

𝑘 stems from Count Sketch’s distance preservation guarantees:

while smaller 𝑘 values introduce larger approximation errors, the

resulting sketch-based distances remain sufficiently accurate to

distinguish Byzantine node signatures from honest node behavior.

The adaptive threshold mechanism 𝛾eff compensates for increased

approximation error, ensuring robust filtering across the entire

practical range of sketch sizes.

5.2.3 Topology-Dependent Robustness. Figure 4 presents Sketch-
Guard’s robustness across five network topologies, averaged over

attack types and datasets. SketchGuard demonstrates identical

robustness to BALANCE and UBAR across all network topologies,

from minimal connectivity in Ring topology to maximum connec-

tivity in Fully Connected networks. In well-connected topologies

(ER graphs with 𝑝 ≥ 0.45, Fully Connected), all three Byzantine-

robust methods maintain low error rates below 20% even when 80%

of the network is compromised, significantly outperforming KRUM

and the non-robust D-FedAvg baseline. In extremely sparse topolo-

gies (Ring), BALANCE, UBAR, and SketchGuard exhibit graceful

degradation, tolerating up to 40% Byzantine clients before substan-

tial performance loss. Despite having only two neighbors per node

in the Ring topology, SketchGuard maintains performance parity

with full-precisionmethods across all attack intensities, demonstrat-

ing that sketch-based compression does not compromise filtering

effectiveness even under severe connectivity constraints.

5.3 Computational Efficiency

Figure 5 evaluates SketchGuard’s computational efficiency through

network size and model dimensionality scaling experiments on

FEMNIST with 50% Byzantine clients under directed deviation at-

tacks. Network scaling uses the baseline 6.6M parameter model

across varying k-regular graph sizes, while model dimensionality

scaling uses a fixed k-regular graph with node degree 154 across

varying model sizes as detailed in Appendix C.3.

5.3.1 Network Size Scalability. SketchGuard exhibits near-constant
computational cost as network connectivity increases from 16 to 299

neighbors (Figure 5a), averaging 0.35s per round, while BALANCE

and UBAR scale linearly with neighbor count. At smaller network

sizes (≤32 neighbors), SketchGuard’s sketch generation overhead

dominates, resulting in higher absolute costs than full-precision

methods. However, as connectivity increases beyond 96 neighbors,

SketchGuard’s compressed screening operations yield substantial

benefits. The efficiency gap widens multiplicatively with network

size: at 154 neighbors, SketchGuard requires 0.34s compared to

BALANCE’s 0.51s and UBAR’s 1.10s, achieving 33% and 69% savings

respectively; at 299 neighbors, these savings expand to 60% and 82%,

with SketchGuard requiring only 0.39s versus BALANCE’s 0.99s

and UBAR’s 2.14s. This scalability advantage stems from neighbor

screening operating in compressed 𝑘-dimensional space rather than

full 𝑑-dimensional space, yielding multiplicative gains proportional

to network connectivity.

5.3.2 Model Dimensionality Scalability. SketchGuard demonstrates

sub-linear scaling as model size increases from 220K to 60M pa-

rameters (Figure 5b), contrasting sharply with the linear scaling

of BALANCE and UBAR. For models exceeding 26M parameters,

SketchGuard maintains average computational improvement of

64% over state-of-the-art methods. At 60M parameters, Sketch-

Guard requires 2.0s versus BALANCE’s 4.2s and UBAR’s 10.0s,

achieving 52% and 80% reductions respectively. This sub-linear

scaling emerges from Count Sketch’s property that sketch size 𝑘

depends on approximation parameters (𝜖 , 𝛿) rather than model

dimension 𝑑 . While full-precision methods incur 𝑂 (𝑑 |N𝑖 |) com-

parison costs that grow linearly with model size, SketchGuard’s

sketch comparison cost remains fixed at 𝑂 (𝑘 |N𝑖 |) regardless of 𝑑 ,
proving particularly valuable for large-scale DFL scenarios involv-

ing billion-parameter models [7].

7

0 20 40 60 80
Frac. of malicious clients (%)

0.0

0.2

0.4

0.6

0.8

1.0

TE
R

(a) Ring

0 20 40 60 80
Frac. of malicious clients (%)

0.0

0.2

0.4

0.6

0.8

1.0

TE
R

(b) ER p=0.2

0 20 40 60 80
Frac. of malicious clients (%)

0.0

0.2

0.4

0.6

0.8

1.0

TE
R

(c) ER p=0.45

0 20 40 60 80
Frac. of malicious clients (%)

0.0

0.2

0.4

0.6

0.8

1.0

TE
R

(d) ER p=0.6

0 20 40 60 80
Frac. of malicious clients (%)

0.0

0.2

0.4

0.6

0.8

1.0

TE
R

(e) Fully Connected

0 20 40 60 80
0.120

0.421

0.722
Zoom

0 20 40 60 80
0.117

0.133

0.149
Zoom

0 20 40 60 80
0.120

0.133

0.145
Zoom

0 20 40 60 80
0.120

0.133

0.146
Zoom

0 20 40 60 80
0.119

0.132

0.145
Zoom

FEDAVG KRUM BALANCE UBAR SKETCHGUARD

Figure 4: Impact of fraction of malicious clients on TER across different network topologies.

0 50 100 150 200 250 300
Node Degree

0.0

0.5

1.0

1.5

2.0

C
om

pu
te

 T
im

e
(s

)

(a) Network Scalability

106 107

Model Dimension

0

2

4

6

8

10

C
om

pu
te

 T
im

e
(s

)

(b) Model Scalability

BALANCE UBAR SKETCHGUARD

Figure 5: Impact of network size and model dimensionality

on per-node computation time.

5.4 Communication Efficiency

SketchGuard reduces per-round communication complexity from

𝑂 (𝑑 |N𝑖 |) to 𝑂 (𝑘 |N𝑖 | + 𝑑 |S𝑖 |), where |S𝑖 | ≤ |N𝑖 | denotes accepted
neighbors post-filtering.

5.4.1 Compression Ratios and Bandwidth Reduction. With compres-

sion ratios exceeding 6300:1 for both datasets, sketch transmission

overhead becomes negligible compared to full model exchanges.

Table 3 presents communication efficiency under different filtering

scenarios. In scenarioswhere Byzantine filtering successfully rejects

70% of malicious neighbors, SketchGuard achieves approximately

70% communication reduction relative to full-precision methods.

Even in benign settings where all neighbors are accepted, the sketch

overhead of 𝑂 (𝑘 |N𝑖 |) represents less than 0.02% additional cost

compared to the 𝑂 (𝑑 |N𝑖 |) baseline due to the compression ratio

𝑘/𝑑 ≈ 1/6300, introducing negligible bandwidth penalty.

5.4.2 Multiplicative Scaling Benefits. The communication savings

scale multiplicatively with both model dimensionality and network

connectivity. Consider a fully connected network with 100 neigh-

bors per node and FEMNIST’s 6.6M parameter model under 50%

Byzantine clients, where Count Sketch compresses models to 1K

parameters:

Table 3: Communication Overhead Comparison

Scenario Accepted Neighbors Reduction

Benign (no filtering) |S𝑖 | = |N𝑖 | <0.02% penalty

50% Byzantine filtering |S𝑖 | ≈ 0.5 |N𝑖 | ∼50%
70% Byzantine filtering |S𝑖 | ≈ 0.3 |N𝑖 | ∼70%

• SketchGuard: Transmits 100K sketch parameters plus 330M

full model parameters, totaling ∼330M parameters.

• Full-PrecisionMethods: Transmit 660Mparameters to all neigh-

bors.

• Reduction: ∼50% bandwidth savings.

These bandwidth savings prove critical for resource-constrained

devices and bandwidth-limited networks characteristic of real-

world decentralized learning deployments. As model sizes grow

and networks expand, SketchGuard’s communication efficiency

becomes essential for practical deployment.

6 Conclusions and Future Work

We proposed SketchGuard, a framework for scaling Byzantine-

robust decentralized federated learning through sketch-based neigh-

bor screening. By decoupling Byzantine filtering from model ag-

gregation, our approach reduces communication complexity from

𝑂 (𝑑 |N𝑖 |) to 𝑂 (𝑘 |N𝑖 | + 𝑑 |S𝑖 |) while preserving robustness guaran-
tees of full-precision similarity-based defenses.

Our theoretical analysis establishes that Count Sketch compres-

sion maintains Byzantine resilience with controlled degradation

bounds, where approximation errors introduce only a (1+𝑂 (𝜖)) fac-
tor in the effective threshold parameter.We prove convergence guar-

antees in both strongly convex and non-convex settings, achieving

optimal rates for their respective problem classes. Comprehensive

experiments demonstrate that SketchGuard maintains identical

robustness to state-of-the-art methods, with mean TER deviation

of only up to 0.35 percentage points. This robustness equivalence

is achieved while reducing computation time by up to 82%, with

efficiency gains scaling multiplicatively with model dimension-

ality and network connectivity. Communication overhead scales

proportionally with the fraction of accepted neighbors, achieving

reductions of 50-70% under typical Byzantine attack scenarios.

SketchGuard addresses the fundamental scalability bottleneck

limiting real-world deployment of robust decentralized learning.

Future work includes efficient hash synchronization protocols for

8

dynamic networks, adaptive sketch sizing based on attack inten-

sity, and theoretical extensions to non-IID data distributions. As FL

expands into web-scale deployments with untrusted participants,

scalable robustness mechanisms like SketchGuard become essen-

tial infrastructure for maintaining both security and performance

in distributed machine learning systems.

Acknowledgments

This work is supported by the Australian Research Council (ARC)

through Discovery Project grant DP240102088 and Linkage Infras-

tructure, Equipment and Facilities grant LE200100049.

References

[1] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2017.

QSGD: Communication-efficient SGD via gradient quantization and encoding.

Advances in neural information processing systems 30 (2017).
[2] Gilad Baruch, Moran Baruch, and Yoav Goldberg. 2019. A little is enough:

Circumventing defenses for distributed learning. Advances in Neural Information
Processing Systems 32 (2019).

[3] Enrique Tomás Martínez Beltrán et al. 2023. Decentralized federated learning:

Fundamentals, state of the art, frameworks, trends, and challenges. IEEE Com-
munications Surveys & Tutorials 25, 4 (2023), 2983–3013.

[4] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree

Anandkumar. 2018. signSGD: Compressed optimisation for non-convex problems.

In International conference on machine learning. PMLR, 560–569.

[5] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.

2017. Machine learning with adversaries: Byzantine tolerant gradient descent.

Advances in neural information processing systems 30 (2017).
[6] John Adrian Bondy, Uppaluri Siva Ramachandra Murty, et al. 1976. Graph theory

with applications. Vol. 290. Macmillan London.

[7] Alexander Borzunov, Max Ryabinin, Artem Chumachenko, Dmitry Baranchuk,

Tim Dettmers, Younes Belkada, Pavel Samygin, and Colin A Raffel. 2023. Dis-

tributed inference and fine-tuning of large language models over the internet.

Advances in neural information processing systems 36 (2023), 12312–12331.
[8] Diego Cajaraville-Aboy, Ana Fernández-Vilas, Rebeca P Díaz-Redondo, and

Manuel Fernández-Veiga. 2024. Byzantine-robust aggregation for securing de-

centralized federated learning. arXiv preprint arXiv:2409.17754 (2024).
[9] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,

H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2018. Leaf: A

benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018).

[10] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding frequent

items in data streams. In International Colloquium on Automata, Languages, and
Programming. Springer, 693–703.

[11] El Mahdi El-Mhamdi, Sadegh Farhadkhani, Rachid Guerraoui, Arsany Guirguis,

Lê-Nguyên Hoang, and Sébastien Rouault. 2021. Collaborative learning in the

jungle (decentralized, byzantine, heterogeneous, asynchronous and nonconvex

learning). Advances in neural information processing systems 34 (2021), 25044–
25057.

[12] P. Erdős and A. Rényi. 1960. On the Evolution of Random Graphs. Publication of
the Mathematical Institute of the Hungarian Academy of Sciences 5 (1960), 17–61.

[13] Minghong Fang et al. 2024. Byzantine-robust decentralized federated learn-

ing. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security. 2874–2888.

[14] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. 2020. Local model

poisoning attacks to {Byzantine-Robust} federated learning. In 29th USENIX
security symposium (USENIX Security 20). 1605–1622.

[15] Guillaume Garrigos and Robert M Gower. 2023. Handbook of convergence

theorems for (stochastic) gradient methods. arXiv preprint arXiv:2301.11235
(2023).

[16] Vineet Sunil Gattani, Junshan Zhang, and Gautam Dasarathy. 2024.

Communication-Efficient Federated Learning over Wireless Channels

via Gradient Sketching. arXiv preprint arXiv:2410.23424 (2024).
[17] Shangwei Guo, Tianwei Zhang, Han Yu, Xiaofei Xie, Lei Ma, Tao Xiang, and Yang

Liu. 2021. Byzantine-resilient decentralized stochastic gradient descent. IEEE
Transactions on Circuits and Systems for Video Technology 32, 6 (2021), 4096–4106.

[18] Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, and Mehrdad

Mahdavi. 2021. Federated learning with compression: Unified analysis and sharp

guarantees. In International Conference on Artificial Intelligence and Statistics.
PMLR, 2350–2358.

[19] Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. 2022. Byzantine-robust

decentralized learning via clippedgossip. arXiv preprint arXiv:2202.01545 (2022).
[20] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,

Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies

for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).
[21] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.

2017. Can decentralized algorithms outperform centralized algorithms? a case

study for decentralized parallel stochastic gradient descent. Advances in neural
information processing systems 30 (2017).

[22] Alexander Long. 2024. Protocol Learning, Decentralized Frontier Risk and the

No-Off Problem. arXiv preprint arXiv:2412.07890 (2024).
[23] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-

works from decentralized data. In Artificial intelligence and statistics. PMLR,

1273–1282.

[24] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin

Wongrassamee, Emil C Lupu, and Fabio Roli. 2017. Towards poisoning of deep

learning algorithms with back-gradient optimization. In Proceedings of the 10th
ACM workshop on artificial intelligence and security. 27–38.

[25] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. 2022. Robust aggregation

for federated learning. IEEE Transactions on Signal Processing 70 (2022), 1142–

1154.

[26] Daniel Rothchild et al. 2020. Fetchsgd: Communication-efficient federated learn-

ing with sketching. In International Conference on Machine Learning. PMLR,

8253–8265.

[27] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. 2019.

Robust and communication-efficient federated learning from non-iid data. IEEE
transactions on neural networks and learning systems 31, 9 (2019), 3400–3413.

[28] Virat Shejwalkar and Amir Houmansadr. 2021. Manipulating the byzantine:

Optimizing model poisoning attacks and defenses for federated learning. In

NDSS.
[29] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. 2018. Sparsified

SGD with memory. Advances in neural information processing systems 31 (2018).
[30] Peng Sun, Xinyang Liu, Zhibo Wang, and Bo Liu. 2024. Byzantine-robust decen-

tralized federated learning via dual-domain clustering and trust bootstrapping. In

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
24756–24765.

[31] Tianxiang Wang, Zhonglong Zheng, and Feilong Lin. 2025. Federated learning

framework based on trimmed mean aggregation rules. Expert Systems with
Applications (2025), 126354.

[32] CongXie, Oluwasanmi Koyejo, and Indranil Gupta. 2020. Fall of empires: Breaking

byzantine-tolerant sgd by inner product manipulation. In Uncertainty in artificial
intelligence. PMLR, 261–270.

[33] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018.

Byzantine-robust distributed learning: Towards optimal statistical rates. In Inter-
national conference on machine learning. Pmlr, 5650–5659.

A Proof of Theorem 1

We provide a detailed proof of the convergence guarantee for

SketchGuard under strongly convex objectives with sketch-based

compression. The proof structure follows the analysis framework

of BALANCE [13], with key modifications to handle Count Sketch

compression errors through the effective threshold parameter 𝛾eff.

A.1 Setup and Notation

We denote by g(w𝑡
𝑖) the stochastic gradient computed by client 𝑖 at

round 𝑡 . The local update is:

w𝑡+1/2
𝑖

= w𝑡
𝑖 − 𝜂g(w𝑡

𝑖), (10)

where 𝜂 > 0 is the learning rate. For simplicity in the proof, we

drop the superscript 𝑡 in S𝑡𝑖 and write S𝑖 .

A.2 Model Update Analysis

The model update for client 𝑖 can be expressed as:

w𝑡+1
𝑖 −w𝑡

𝑖 = 𝛼w𝑡+1/2
𝑖

+ (1 − 𝛼) 1

|S𝑖 |
∑︁
𝑗∈S𝑖

w𝑡+1/2
𝑗
−w𝑡

𝑖 (11)

9

= 𝛼w𝑡+1/2
𝑖

+ (1 − 𝛼) 1

|S𝑖 |
×

∑︁
𝑗∈S𝑖

(w𝑡+1/2
𝑗
−w𝑡+1/2

𝑖
+w𝑡+1/2

𝑖
) −w𝑡

𝑖 (12)

= w𝑡+1/2
𝑖

+ 1 − 𝛼
|S𝑖 |

×
∑︁
𝑗∈S𝑖

(w𝑡+1/2
𝑗
−w𝑡+1/2

𝑖
) −w𝑡

𝑖 (13)

= −𝜂g(w𝑡
𝑖) +

1 − 𝛼
|S𝑖 |

×
∑︁
𝑗∈S𝑖

(w𝑡+1/2
𝑗
−w𝑡+1/2

𝑖
) (14)

A.3 Applying Smoothness

By the 𝐿-smoothness assumption, we have:

𝐹 (w𝑡+1
𝑖) ≤ 𝐹 (w𝑡

𝑖) + ⟨∇𝐹 (w𝑡
𝑖),w𝑡+1

𝑖 −w𝑡
𝑖 ⟩

+ 𝐿

2

∥w𝑡+1
𝑖 −w𝑡

𝑖 ∥2 (15)

Substituting the model update expression:

𝐹 (w𝑡+1
𝑖) ≤ 𝐹 (w𝑡

𝑖) − 𝜂⟨∇𝐹 (w𝑡
𝑖), g(w𝑡

𝑖)⟩

+ ⟨∇𝐹 (w𝑡
𝑖),

1 − 𝛼
|S𝑖 |

∑︁
𝑗∈S𝑖

(w𝑡+1/2
𝑗
−w𝑡+1/2

𝑖
)⟩

+ 𝐿

2

−𝜂g(w𝑡
𝑖)

+1 − 𝛼|S𝑖 |
∑︁
𝑗∈S𝑖

(w𝑡+1/2
𝑗
−w𝑡+1/2

𝑖
)

2

(16)

A.4 Bounding the Quadratic Term

Using the inequality ∥𝑎 + 𝑏∥2 ≤ 2∥𝑎∥2 + 2∥𝑏∥2:

−𝜂g(w𝑡
𝑖) +

1 − 𝛼
|S𝑖 |

∑︁
𝑗∈S𝑖

(w𝑡+1/2
𝑗
−w𝑡+1/2

𝑖
)

2

≤ 2𝜂2∥g(w𝑡
𝑖)∥2

+ 2

1 − 𝛼|S𝑖 | ∑︁
𝑗∈S𝑖

(w𝑡+1/2
𝑗
−w𝑡+1/2

𝑖
)

2

(17)

A.5 Impact of Sketch-Based Filtering

With sketch-based filtering, neighbor 𝑗 is accepted if:

∥CS(w𝑡+1/2
𝑖
) − CS(w𝑡+1/2

𝑗
)∥

≤ 𝛾 exp(−𝜅𝑡/𝑇)∥CS(w𝑡+1/2
𝑖
)∥ (18)

By the distance preservation property of Count Sketch [10], this

implies:

∥w𝑡+1/2
𝑖

−w𝑡+1/2
𝑗
∥

≤ 𝛾
√︂

1 + 𝜖
1 − 𝜖 exp(−𝜅𝑡/𝑇)∥w𝑡+1/2

𝑖
∥ (19)

Define 𝛾eff = 𝛾
√︁
(1 + 𝜖)/(1 − 𝜖). Then:

 1

|S𝑖 |
∑︁
𝑗∈S𝑖

(w𝑡+1/2
𝑗
−w𝑡+1/2

𝑖
)

 ≤ 𝛾eff𝜓 (20)

wherewe used the bounded parameters assumption that ∥w𝑡+1/2
𝑖
∥ ≤

𝜓 .

A.6 Taking Expectation

Taking expectation and using the bounded variance assumption:

E[𝐹 (w𝑡+1
𝑖)] ≤ E[𝐹 (w𝑡

𝑖)] − 𝜂∥∇𝐹 (w𝑡
𝑖)∥2

+ (1 − 𝛼)𝛾eff𝜓𝜌
+ 𝐿𝜂2 (∥∇𝐹 (w𝑡

𝑖)∥2 + 𝛿2)
+ 𝐿(1 − 𝛼)2𝛾2

eff
𝜓 2

(21)

A.7 Simplifying with Parameter Constraints

With 𝜂 ≤ 1/(4𝐿), we have 𝐿𝜂2 ≤ 𝜂/4:

E[𝐹 (w𝑡+1
𝑖)] ≤ E[𝐹 (w𝑡

𝑖)] −
𝜂

2

∥∇𝐹 (w𝑡
𝑖)∥2

+ 𝐿𝜂2𝛿2 + 2𝛾eff𝜓𝜌 (1 − 𝛼) (22)

where we chose 𝛾eff ≤ 𝜌/(𝐿𝜓 (1 − 𝛼)).

A.8 Applying Strong Convexity

By the strong convexity assumption and the Polyak-Łojasiewicz

inequality:

∥∇𝐹 (w𝑡
𝑖)∥2 ≥ 2𝜇 (𝐹 (w𝑡

𝑖) − 𝐹 (w∗)) (23)

Therefore:

E[𝐹 (w𝑡+1
𝑖) − 𝐹 (w∗)]

≤ (1 − 𝜇𝜂)E[𝐹 (w𝑡
𝑖) − 𝐹 (w∗)]

+ 𝐿𝜂2𝛿2 + 2𝛾eff𝜓𝜌 (1 − 𝛼) (24)

A.9 Telescoping and Final Bound

Telescoping over 𝑡 = 0, 1, . . . ,𝑇 − 1:
E[𝐹 (w𝑇

𝑖) − 𝐹 (w∗)]
≤ (1 − 𝜇𝜂)𝑇 [𝐹 (w0

𝑖) − 𝐹 (w∗)]

+
𝑇−1∑︁
𝑡=0

(1 − 𝜇𝜂)𝑇−1−𝑡

× (𝐿𝜂2𝛿2 + 2𝛾eff𝜓𝜌 (1 − 𝛼))
= (1 − 𝜇𝜂)𝑇 [𝐹 (w0

𝑖) − 𝐹 (w∗)]

+ 1 − (1 − 𝜇𝜂)𝑇
𝜇𝜂

× (𝐿𝜂2𝛿2 + 2𝛾eff𝜓𝜌 (1 − 𝛼))
≤ (1 − 𝜇𝜂)𝑇 [𝐹 (w0

𝑖) − 𝐹 (w∗)]

+ 2𝐿𝜂𝛿2

𝜇
+ 2𝛾eff𝜌𝜓 (1 − 𝛼)

𝜇𝜂
(25)

This completes the proof of Theorem 1. The key observation is

that the compression error only affects the convergence through

𝛾eff = 𝛾
√︁
(1 + 𝜖)/(1 − 𝜖), introducing a controllable degradation

10

factor while maintaining the same convergence rate as the state-of-

the-art.

B Proof of Theorem 2

We establish the convergence guarantee for SketchGuard in non-

convex settings, adapting the BALANCE analysis framework [13]

for sketch compression.

B.1 Starting from Smoothness

Following the analysis from Appendix A up to the expectation

bound, we have:

E[𝐹 (w𝑡+1
𝑖)] ≤ E[𝐹 (w𝑡

𝑖)] −
𝜂

2

∥∇𝐹 (w𝑡
𝑖)∥2

+ 2𝐿𝜂2𝛿2 + 2𝛾eff𝜓𝜌 (1 − 𝛼) (26)

B.2 Rearranging for Gradient Norm

Rearranging the inequality:

𝜂

2

E[∥∇𝐹 (w𝑡
𝑖)∥2]

≤ E[𝐹 (w𝑡
𝑖) − 𝐹 (w𝑡+1

𝑖)]
+ 2𝐿𝜂2𝛿2 + 2𝛾eff𝜓𝜌 (1 − 𝛼) (27)

B.3 Telescoping

Summing from 𝑡 = 0 to 𝑇 − 1:

𝜂

2

𝑇−1∑︁
𝑡=0

E[∥∇𝐹 (w𝑡
𝑖)∥2]

≤ 𝐹 (w0

𝑖) − E[𝐹 (w𝑇
𝑖)]

+𝑇 (2𝐿𝜂2𝛿2 + 2𝛾eff𝜓𝜌 (1 − 𝛼)) (28)

B.4 Averaging and Using Lower Bound

Since 𝐹 (w𝑇
𝑖) ≥ 𝐹 ∗:

1

𝑇

𝑇−1∑︁
𝑡=0

E[∥∇𝐹 (w𝑡
𝑖)∥2]

≤
2(𝐹 (w0

𝑖) − 𝐹 ∗)
𝜂𝑇

+ 4𝐿𝜂𝛿2 + 4𝛾eff𝜓𝜌 (1 − 𝛼)
𝜂

(29)

This establishes Theorem 2. The convergence rate matches the

optimal rate for non-convex optimization, with the compression

error appearing only through 𝛾eff.

C Supplementary Experimental Details

This appendix provides comprehensive details about the experimen-

tal setup, including model architectures, hyperparameter configura-

tions, network topologies, and scalability experiment specifications

used throughout our study.

C.1 Detailed Model Architectures

Weprovide complete architectural specifications for the two datasets

used in our experiments: FEMNIST and CelebA. Both architectures

follow standard designs adapted to their respective input dimen-

sions and task requirements.

C.1.1 FEMNIST Architecture. The FEMNIST model follows the

original LEAF specification with a convolutional neural network de-

sign. The architecture consists of two convolutional layers followed

by max pooling and two fully connected layers. Table 4 provides the

complete layer-by-layer specification, including parameter counts

and output dimensions.

Table 4: FEMNIST Model Architecture Details

Layer Type Parameters Output Size

Input – – 1 × 28 × 28

Conv1 Conv2d 32 × (5 × 5 × 1) + 32 32 × 28 × 28

Pool1 MaxPool2d – 32 × 14 × 14

Conv2 Conv2d 64 × (5 × 5 × 32) + 64 64 × 14 × 14

Pool2 MaxPool2d – 64 × 7 × 7

Flatten – – 3136

FC1 Linear 3136 × 2048 + 2048 2048

FC2 Linear 2048 × 62 + 62 62

Total 6,603,710

C.1.2 CelebA Architecture. The CelebA model uses a LeNet-style

architecture adapted for larger RGB input images (84 × 84 pixels).
The network has a similar structure to FEMNIST but with modified

convolutional layers to handle color images and a binary classifica-

tion output. The complete architecture is detailed in Table 5.

Table 5: CelebA Model Architecture Details

Layer Type Parameters Output Size

Input – – 3 × 84 × 84

Conv1 Conv2d 30 × (3 × 3 × 3) + 30 30 × 84 × 84

Pool1 MaxPool2d – 30 × 42 × 42

Conv2 Conv2d 50 × (3 × 3 × 30) + 50 50 × 42 × 42

Pool2 MaxPool2d – 50 × 21 × 21

Flatten – – 22050

FC1 Linear 22050 × 100 + 100 100

FC2 Linear 100 × 2 + 2 2

Total 2,219,692

C.2 Complete Experimental Configuration

This section details all hyperparameters and configuration settings

used across our experiments to ensure reproducibility.

C.2.1 Network Topology Specifications. We evaluate defense mech-

anisms across five different network topologies representing vary-

ing levels of connectivity. The ring topology represents minimal

connectivity (degree 2), while Erdős-Rényi graphs with varying

connection probabilities 𝑝 provide intermediate connectivity levels.

The fully connected topology represents maximum connectivity

where each node connects to all others. Table 6 specifies the param-

eters and expected node degrees for each topology in our 20-node

experimental networks.

11

Table 6: Network Topology Configurations

Topology Parameters Expected Degree

Ring – 2

Erdős-Rényi (sparse) 𝑝 = 0.2 3.8

Erdős-Rényi (medium) 𝑝 = 0.45 8.55

Erdős-Rényi (dense) 𝑝 = 0.6 11.4

Fully Connected – 19

C.2.2 Hyperparameter Settings. Table 7 presents the complete set

of hyperparameters used in our experiments, organized by category.

Training configuration parameters were selected based on standard

federated learning practices. Defense mechanism parameters (𝛾 , 𝜅,

𝛼) were tuned to balance robustness and model utility. For Sketch-

Guard, we set the sketch size 𝑘 = 1000 for FEMNIST and 𝑘 = 350

for CelebA to get roughly the same factor of compression for both

datasets.

Table 7: Complete Hyperparameter Configuration

Parameter Value

Training Configuration
Number of clients 20

Global epochs 10

Local epochs per round 3

Batch size 64

Learning rate 0.01 (FEMNIST), 0.001 (CelebA)

Maximum samples per client 10,000 (FEMNIST), 4,500 (CelebA)

Random seed 987654321, 39573295, 32599368

SketchGuard Parameters
Sketch size (𝑘) 1,000 (FEMNIST), 350 (CelebA)

Threshold parameter (𝛾) 2.0

Decay parameter (𝜅) 1.0

Mixing parameter (𝛼) 0.5

Hash seed 42

BALANCE Parameters
Threshold parameter (𝛾) 2.0

Decay parameter (𝜅) 1.0

Mixing parameter (𝛼) 0.5

UBAR Parameters
Robustness parameter (𝜌) 1.0 − attack percentage

KRUM Parameters
Compromised fraction Attack percentage

C.3 Scalability Experiments

We conducted two types of scalability experiments to evaluate how

defense mechanisms perform under different scaling conditions:

network size scaling and model dimensionality scaling.

C.3.1 Network Size Scaling. To evaluate the computational scal-

ability of defense mechanisms with respect to network size, we

conducted experiments on k-regular graphs with varying numbers

of participants. Table 8 shows the configurations used, with net-

work sizes ranging from 20 to 300 nodes. All networks maintain 50%

Byzantine nodes to test defense robustness under high attack sce-

narios. The node degree was selected to ensure connectivity while

maintaining realistic peer-to-peer network constraints. These ex-

periments used shorter training runs (3 rounds with 1 local epoch

each) to focus on measuring computational overhead rather than

convergence behavior.

Table 8: Network Size Scaling Configurations

Node Degree Network Size Attack Percentage

16 20 50%

32 35 50%

96 100 50%

154 155 50%

299 300 50%

C.3.2 Model Scaling Variants. To investigate the impact of model

dimensionality on defense mechanism performance, we created

five variants of the FEMNIST architecture with different parameter

counts. Table 9 describes these variants, ranging from the Tiny

model with approximately 220K parameters to the XLarge model

with over 60M parameters. These variants were created by sys-

tematically scaling the number of convolutional filters and fully

connected layer dimensions while maintaining the overall architec-

tural structure.

Table 9: Model Scaling Variants

Variant Architecture Modifications Parameters

Tiny Reduced filter counts and hidden units 220,318

Small Standard configuration 848,382

Standard Baseline FEMNIST architecture 6,603,710

Large Increased filter counts and hidden units 26,154,814

XLarge Further increased dimensions 60,271,678

12

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 DFL Problem Formulation and Protocol
	2.2 Byzantine Attack Models
	2.3 Byzantine-Robust DFL Defenses
	2.4 Compression Techniques in FL
	2.5 Count Sketch

	3 SketchGuard: Scalable Robust Aggregation
	3.1 Protocol Description
	3.2 Complexity Analysis and Performance Trade-offs

	4 Convergence Analysis
	4.1 Technical Assumptions
	4.2 Main Convergence Results
	4.3 Robustness Preservation Under Compression

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Byzantine Robustness Evaluation
	5.3 Computational Efficiency
	5.4 Communication Efficiency

	6 Conclusions and Future Work
	Acknowledgments
	References
	A Proof of Theorem 1
	A.1 Setup and Notation
	A.2 Model Update Analysis
	A.3 Applying Smoothness
	A.4 Bounding the Quadratic Term
	A.5 Impact of Sketch-Based Filtering
	A.6 Taking Expectation
	A.7 Simplifying with Parameter Constraints
	A.8 Applying Strong Convexity
	A.9 Telescoping and Final Bound

	B Proof of Theorem 2
	B.1 Starting from Smoothness
	B.2 Rearranging for Gradient Norm
	B.3 Telescoping
	B.4 Averaging and Using Lower Bound

	C Supplementary Experimental Details
	C.1 Detailed Model Architectures
	C.2 Complete Experimental Configuration
	C.3 Scalability Experiments

