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1. Introduction to Federated Learning

Federated learning is a machine learning setting where many clients collaboratively
train a model under the orchestration of a central server, while keeping the training
data decentralized.

Iterative Protocol:

1.Eligible clients are selected by the server

2.Server sends the current model to selected clients

3.Clients train model on their private data

4.Server aggregates updates from each client

5.Global model is updated 
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2. Problem with Standard Federated Learning

Reliance on a Centralized Entity

System-wide disruption if coordinator fails
Critical bottleneck for scaling
Performance bounded by central node

Single Point of Failure

Participants must trust the central entity
Coordinator has privileged position
Potential for manipulation of global model

Trust Requirements

Cross-border data governance issues
Compliance with regional regulations
Questions of model ownership

Regulatory Challenges



3. Decentralized or P2P Learning

Decentralized learning is a machine learning paradigm where multiple
independent nodes train and share model updates in a peer-to-peer network
without any central coordinator or server.

Communication topology: connected graph with clients as nodes, edges as channels

Rounds: local updates + neighbor information exchange

Updates: gradient steps; communication: parameter averaging

No global model state, but local models converge to global solution

Central authority may still define the learning task



4. Core Challenges in Decentralization

Trust Establishment Establishing trust among distributed untrusting nodes

Resource Heterogeneity Dealing with nodes that have different computational power levels

Communication Efficiency Managing limited bandwidth for model updates

Model Convergence Achieving model consensus across distributed training nodes

Data Privacy Protecting node-specific data while enabling collaborative learning

Regulatory Compliance Navigating varied legal requirements across jurisdictions



Untrustworthy nodes may be part of a DFL network

5. The Trust Problem in DFL

Each node needs to make a decision on which neighbors to trust

Wrong decisions can propogate bad updates across the network

In sparse network topologies, ignoring a malicious node can
inadvertently isolate an honest subset of the network.



How can we make decentralized learning
byzantine-robust?

Similarity Based
Neighbor Filtering

6. Existing Literature 

Consensus Based
Approaches

Topology-aware
Defenses
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6. Existing Literature 

Least Complex and Most Practical for Nodes with a Graph-Limited View



7. State of the Art - UBAR

Client Client Client Client

Phase 1
Local Training

Client

Phase 2
Model Exchange

Phase 3
Distance Screening

Phase 5
Model Aggregation

Phase 4
Local Loss Test

Distance Screening
 Each client compares its model with neighbors and keeps only the closest subset. This fast, low-cost step removes distant or inconsistent models, cutting

off obvious Byzantine outliers before deeper checks.

Local Loss Test
 The shortlisted neighbors are re-evaluated using the client’s own mini-batch. Only those whose models perform no worse than the client’s local model are

trusted for aggregation, ensuring robustness against subtle, data-aware attacks.
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7. State of the Art - UBAR

Computationally Heavy and Slow



Excludes the Local Loss Test

Introduces a dynamic thresholding mechanism with a decay factor

8. State of the Art - BALANCE

Upper limit for accepting a model as benign Determines the rate at which the exponential
function decreases; a larger 𝜅 results in a faster
decay, while a smaller 𝜅 leads to a slower decay

A monotonically increasing and
non-negative function associated

with the training round index



9. Scalability Bottleneck with SOTA

Fundamental Scalability Bottleneck

Clients exchange full model vectors with all neighbors in every
round, even though many will later be discarded as malicious or

irrelevant. This causes redundant communication and
computation overhead.
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10. An Introduction to Count Sketch

Count Sketch is a Dimensionality Reduction Technique

Size d

Size k

h: [d] → [k]

Hash Table

2 4 2 1 0 9 5 5 4 6 7 1 3 2 8 9 3 0 4 6

-1 -1 -1 +1 +1 -1 -1 +1 +1 +1 +1 -1 +1 +1 -1 +1 -1 -1 -1 +1

Sign Table

s: [d] → {-1, +1}

-0.35



Properties of Count Sketch

They are Linear (CS(x + y) = CS(x) + CS(y))

10. An Introduction to Count Sketch

Give unbiased estimates of true values or inner products

Works well even if vectors that are being compressed are sparse (many zeros)

Most Importantly, they preserve the Euclidean Distance of the original vector



11. Sketchguard

Client Client

Model

Sketch

Client Client Client Client

Phase 1
Local Training

...

Phase 2a
Model Compression

Phase 2b
Sketch Exchange

Phase 3
Filter Neighbors

Phase 4a
Model Exchange

Phase 4b
Model Aggregation

Key Insight: Similarity-based byzantine filtering can operate on compressed representations, while the final aggregation requires full
precision models only for accepted neighbors. 
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Phase 3: Neighbor 𝑗 is accepted if their sketch distance satisfies:

11. Sketchguard

Phase 1: Client 𝑖 performs local stochastic gradient descent

Phase 2: The updated model is compressed using count sketch, and these 𝑘-dimensional sketches are
exchanged with the immediate neighbors

Phase 4: Full models are fetched from accepted neighbors. Before aggregation, each received model is verified by recomputing
its sketch and comparing with the originally received sketch . Any neighbor whose model fails verification is removed from. The
verified models are then aggregated:



Model Dimension (Size)

Sketch Dimension (Size)

12. Sketchguard Complexity vs SOTA

Number of Neighbors

Accepted neighbors in round t



Directed Deviation Attack

These attacks employ an optimization-based
approach that crafts malicious updates in the
direction opposite to honest gradient descent.
This adaptive attack strategy represents a strong
adversary that actively attempts to subvert robust
aggregation mechanisms.

13. Sketchguard Robustness vs SOTA
Gaussian Attack

These attacks inject random noise, representing
less sophisticated but realistic adversaries that
disrupt convergence through stochastic
perturbations.
These attacks model practical scenarios where
attackers lack complete knowledge of the
aggregation mechanism.
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14. Sketchguard Scalability vs SOTA

Network Scaling Experiment Configurations

Model Scaling Experiment Configurations



Communication efficiency gains of Sketchguard are directly proportional to the number of filtered neighbors 
(size of malicious neighborhood)

Since Sketchguard can support compression ratios greater than 6300:1, the sketch transmission overhead
becomes negligible. 

14. Sketchguard Scalability vs SOTA
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