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1. Introduction to Federated Learning
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Federated learning is a machine learning setting where many clients collaboratively
train a model under the orchestration of a central server, while keeping the training

data decentralized.
_ o
Iterative Protocol: Clents =

1.Eligible clients are selected by the server

2.Server sends the current model to selected clients

3.Clients train model on their private data

Server

Rest of
the World

4.Server aggregates updates from each client

Federated Leaming Engineers & Analysts

5.Global model is updated
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2. Problem with Standard Federated Learning
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Reliance on a Centralized Entity

Single Point of Failure Trust Requirements Regulatory Challenges
e System-wide disruption if coordinator fails e Participants must trust the central entity e Cross-border data governance issues
e Critical bottleneck for scaling e Coordinator has privileged position e Compliance with regional regulations

e Performance bounded by central node e Potential for manipulation of global model e Questions of model ownership



3. Decentralized or P2P Learning
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Decentralized learning is a machine learning paradigm where multiple
independent nodes train and share model updates in a peer-to-peer network
without any central coordinator or server.

e Communication topology: connected graph with clients as nodes, edges as channels E m
Client Client
e Rounds: local updates + neighbor information exchange \
e Updates: gradient steps; communication: parameter averaging E E
Client Client
e No global model state, but local models converge to global solution \ /
e Central authority may still define the learning task E m

Client Client



4. Core Challenges in Decentralization
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Trust Establishment Establishing trust among distributed untrusting nodes

Resource Heterogeneity e Dealing with nodes that have different computational power levels

Communication Efficiency e Managing limited bandwidth for model updates

Model Convergence e Achieving model consensus across distributed training nodes

Data Privacy

Protecting node-specific data while enabling collaborative learning

Regulatory Compliance Navigating varied legal requirements across jurisdictions




5. The Trust Problem in DFL
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Untrustworthy nodes may be part of a DFL network

Each node needs to make a decision on which neighbors to trust

Wrong decisions can propogate bad updates across the network

In sparse network topologies, ighoring a malicious node can
inadvertently isolate an honest subset of the network.



6. Existing Literature
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How can we make decentralized learning

byzantine-robust?
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Similarity Based Consensus Based Topology-aware

Neighbor Filtering Approaches Defenses



6. Existing Literature
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How can we make decentralized learning

byzantine-robust?
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Similarity Based Consensus Based Topology-aware
Neighbor Filtering Approaches Defenses

Least Complex and Most Practical for Nodes with a Graph-Limited View
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/. State of the Art - UBAR
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Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
Local Training Model Exchange Distance Screening Local Loss Test Model Aggregation

\e Client % Client % Client % Client % Client _)
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Distance Screening
Each client compares its model with neighbors and keeps only the closest subset. This fast, low-cost step removes distant or inconsistent models, cutting
off obvious Byzantine outliers before deeper checks.

Local Loss Test
The shortlisted neighbors are re-evaluated using the client’s own mini-batch. Only those whose models perform no worse than the client’s local model are
trusted for aggregation, ensuring robustness against subtle, data-aware attacks.



/. State of the Art - UBAR
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Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
Local Training Model Exchange Distance Screening Local Loss Test Model Aggregation

> Client ﬁ Client % Client Client Client —/
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Computationally Heavy and Slow <



8. State of the Art - BALANCE
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Excludes the Local Loss Test

Introduces a dynamic thresholding mechanism with a decay factor

1

t+5
-exp(—x - A(2))[Iw; “|

Upper limit for accepting a model as benign



9. Scalability Bottleneck with SOTA
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Fundamental Scalability Bottleneck

Clients exchange full model vectors with all neighbors in every
round, even though many will later be discarded as malicious or
irrelevant. This causes redundant communication and
computation overhead.



10. An Introduction to Count Sketch
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Count Sketch is a Dimensionality Reduction Technique

Size d 0.3 [0.65] 0.5 [0.23]0.78 (0.5910.24 | 0.35]|0.340.56 “ 0.89] 1.4 [0.34]0.65]0.24 [0.75|0.78 [ 0.35]0.86( 0.35
o )
Hash Table
v .
h: [d] - [K] 2 4 2 1 O 9 5 5 4 6 “ 7 1 3 2 3 9 3 G 4 6
Sign Table
v
s: [d] » {1, +1} -1 | -1 | -1 +1 | +1 | -1 | 1 +1 | +1 |+ | +1 (-1 (+1 (+1 (-1 {+1 | -1 -1 -1 ] +1
J

Size k -0.35




10. An Introduction to Count Sketch
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Properties of Count Sketch

They are Linear (CS(x +y) = CS(x) + CS(y))

Give unbiased estimates of true values or inner products

Works well even if vectors that are being compressed are sparse (many zeros)

Most Importantly, they preserve the Euclidean Distance of the original vector



11. Sketchguard B
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Phase 1 Phase 2a Phase 2b Phase 3 Phase 4a Phase 4b
Local Training Model Compression Sketch Exchange Filter Neighbors Model Exchange Model Aggregation

— Client % Client % Client % Client % Client % Client —/
() ! T\ ! !
@@ Sketch v : f ' m +w + ...

Key Insight: Similarity-based byzantine filtering can operate on compressed representations, while the final aggregation requires full
precision models only for accepted neighbors.



11. Sketchguard
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Phase 1 Phase 2a Phase 2b Phase 3 Phase 4a Phase 4b MELBOURNE
Local Training Model Compression Sketch Exchange Filter Neighbors Model Exchange Model Aggregation

\— Client H Client H Client % Client H Client H Client —/
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Model
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Phase 1: Client i performs local stochastic gradient descent

Phase 2: The updated model is compressed using count sketch, and these k-dimensional sketches are
exchanged with the immediate neighbors

Phase 3: Neighbor j is accepted if their sketch distance satisfies: |ls;""/* —s'*/*|| < y exp(—xt/T)|Is;*"/*|

i

Phase 4: Full models are fetched from accepted neighbors. Before aggregation, each received model is verified by recomputing
its sketch and comparing with the originally received sketch . Any neighbor whose model fails verification is removed from. The
verified models are then aggregated: 1 _ 412, (1= @) 3wl
i i | t|
jeS8t



12. Sketchguard Complexity vs SOTA
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Training Phase SOTA SketchGuard

Local Training O(d) O(d)

Sketch Generation — O(d)

Neighbor Screening  O(d - |N;|) O(k - |N;|)

Model Verification & O(d - |S!|) O(d - |S}|)

Aggregation

Total Per Round O(d - |[N;|) O(d+k-|Ni|+d-|S{])
d Model Dimension (Size) IN;| Number of Neighbors

k Sketch Dimension (Size) |S/| Accepted neighbors in round ¢



13. Sketchguard Robustness vs SOTA

e These attacks inject random noise, representing
less sophisticated but realistic adversaries that
disrupt convergence through stochastic
perturbations.

e These attacks model practical scenarios where
attackers lack complete knowledge of the
aggregation mechanism.
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e These attacks employ an optimization-based
approach that crafts malicious updates in the
direction opposite to honest gradient descent.

e This adaptive attack strategy represents a strong
adversary that actively attempts to subvert robust
aggregation mechanisms.
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13. Sketchguard Robustness vs SOTA
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14. Sketchguard Scalability vs SOTA
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14. Sketchguard Scalability vs SOTA
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Communication efficiency gains of Sketchguard are directly proportional to the number of filtered neighbors

(size of malicious neighborhood)

Since Sketchguard can support compression ratios greater than 6300:1, the sketch transmission overhead
becomes negligible.

Table 3: Communication Overhead Comparison

Scenario Accepted Neighbors Reduction
Benign (no filtering) Si| = | Ni] <0.02% penalty
50% Byzantine filtering |S; | = 0.5|N;] ~50%

70% Byzantine filtering |5 | = 0.3 Nj| ~T0%
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